Tail negative dependence and its applications for aggregate loss modeling

نویسنده

  • Lei Hua
چکیده

Abstract. Tail order of copulas can be used to describe the strength of dependence in the tails of a joint distribution. When the value of tail order is larger than the dimension, it may lead to tail negative dependence. First, we prove results on conditions that lead to tail negative dependence for Archimedean copulas. Using the conditions, we construct new parametric copula families that possess upper tail negative dependence. Among them, a copula based on a scale mixture with a generalized gamma random variable (GGS copula) is useful for modeling asymmetric tail negative dependence. We propose mixed copula regression based on the GGS copula for aggregate loss modeling of a medical expenditure panel survey dataset. For this dataset, we find that there exists upper tail negative dependence between loss frequency and loss severity, and the introduction of tail negative dependence structures significantly improves the aggregate loss modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of seismic loss dependence using copula.

The catastrophic nature of seismic risk is attributed to spatiotemporal correlation of seismic losses of buildings and infrastructure. For seismic risk management, such correlated seismic effects must be adequately taken into account, since they affect the probability distribution of aggregate seismic losses of spatially distributed structures significantly, and its upper tail behavior can be o...

متن کامل

Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications

In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...

متن کامل

Asymptotic Analysis of the Loss Given Default in the Presence of Multivariate Regular Variation

Consider a portfolio of n obligors subject to possible default. We propose a new structural model for the loss given default, which takes into account the severity of default. Then we study the tail behavior of the loss given default under the assumption that the losses of the n obligors jointly follow a multivariate regular variation structure. This structure provides an ideal framework for mo...

متن کامل

Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling

The idea of using common Poisson shock processes to model dependent event frequencies is well known in the reliability literature. In this paper we examine these models in the context of insurance loss modelling and credit risk modelling. To do this we set up a very general common shock framework for losses of a number of different types that allows for both dependence in loss frequencies acros...

متن کامل

Stress-Strength and Ageing Intensity Analysis via a New Bivariate Negative Gompertz-Makeham Model

In Demography and modelling mortality (or failure) data the univariate Makeham-Gompertz is well-known for its extension of exponential distribution. Here, a bivariate class of Gompertz--Makeham distribution is constructed based on random number of extremal events. Some reliability properties such as ageing intensity, stress-strength based on competing risks are given. Also dependence properties...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015